
EXTERNAL CONNECTIONS - APPLICATIONS

Open Entity facilitates external connections to Business Central through a single API for entering and modifying any type of information, such as a new customer or contact,
a sales document, an inventory, etc. The API ‘entityEntries’ will always be used for this purpose.

For other operations, such as reading or deleting an entity or retrieving a serial number from Business Central, we use the OE API followed by an underscore and the desired
function, such as ReadEntity or DeleteEntity (e.g., OE_ReadEntity).

All information sent or received must be compressed in GZIP format. Both in sending and receiving, it is necessary to specify the template that will manage the information
and a user or device identifier. This is more of a disabling mechanism for handling any potential issues or for planned inactivity of the device or user, rather than a security
measure.

In this document, we will use the Postman application to simulate an application that sends and receives information to and from Business Central, and the DevToys
program to compress/decompress information in GZIP format.

DATA READING
For both reading and writing, the action to be performed will always be the POST method, and OAuth (token) authorization is essential to establish the connection.
In Postman, we used the Bearer option and the token previously read from the Open Entity application.

The parameters client_id and client_secret correspond to the values of our application registration in Azure Microsoft Entra.

The access_token received will be included in our data queries or insertions in the Authorization tab. For example, Bearer + received token.
To perform a data read, we will need to send the following information:

• templateCode: the template code that will read the data.

• filterTable: filters to be used in data selection.

• senderUser: a name that must exist in Permissions within the Open Entity application for the template used.

• format: the format in which we want the information returned; it can only be xml or json.

• skipNameSpace: Open Entity uses namespaces in tables for self-management; here, we can decide whether we want it included in the data received.

In the following request, we are requesting information about a customer with a specific Vat Number.

If we decompress the value received in “value”, we will see that the read action was executed successfully and the data corresponds to the configuration of the template
defined in our sent templateCode:

Let's look at the configuration of the "SCENARIO 04 - CUST" template:

As can be observed, the operation of the template is read-only, and the tags that make up the selection filter must match.
This is all we need for our data request to work.

FILTERS

There are two ways to filter information from an external app: by using the tags defined in the template lines and fields or simply by their numbering. Combining both
syntaxes in a single filter is not allowed.

Both filter types consist of three main values separated by special characters. The values are the table number or name (tag), the field number or name (tag), and the filter
itself or selection values. Because it is possible to filter by any level of the template, each individual filter must always contain these three values.

In this numeric filter, 37 is the Sales Line table; the numbers 1, 2, 5, and 6 are the fields, and Order, 10000, Item, and 1896-S..1996-S are the values to filter.

The separators have the following meanings:

• The ‘;’ character separates the field from the filter value → 6;1896-S..1996-S (6 is the field No., and 1896-S..1996-S is the product range).

• The ‘#’ character separates the table from the previous filter (field and selection). 37#6;1896-S..1996-S means that for table 37 (Sales Line), the described filter is
applied.

• Finally, the ‘%’ character separates different filter groups that may be configured.

In this case:

37#1;Order
37#2;10000
37#5;Item
37#6; 1896-S..1996-S

The following breakdown means to select all sales lines of an Order document for customer 10000 where the lines are of type Item and the product codes fall within the
range from 1896-S to 1996-S. Filters with alphanumeric encoding (names) must match the tag configured in the template fields.

ALPHANUMERIC FILTERS
salesLine#doctype;Order
salesLine#custcode;10000
salesLine#type;Item
salesLine#itemcode; 1896-S..1996-S

Highlight the use of the Fuse column to group product codes and total them in a single line.

RESULT

INSERTING-MODIFYING DATA

An external application generates the following data in XML (it also supports JSON) to create an order and compresses it in GZIP format:

We copy the Compressed Output and add it to the entity field in our Post, enclosed in quotes. The compressed data can be in XML or JSON format.

The general data entry URL is as shown on the screen below. The blank space corresponds to our tenant id, and the underlined text should be our company id. The final
text, entityEntries, is the name of our resource or API.

The returned value of the ‘trackCode’ field is the tracking code for the operations performed by our Post in Business Central.

 The result is the following order created in Business Central:

TEMPLATE SCENARIO 04 - ORDER (Business Central)

This is the composition in Open Entity for the previous example of creating an order. It uses resources covered in other documents of the manual, so we will simply highlight
them graphically.

Template Lines:

 Table Fields Configuration:

'Get From' Card Configuration used in the field configuration of Customers (Get From column):

 To modify a single order line, we can use the same request but with a different template as the sending parameter (SCEN04-READORDLINES).

DELETING DATA

To delete data related to a template, we use the ‘OE_DeleteEntity’ function.
The expected parameters are the template code, filters, and the user or device that wants to execute the action.

In this case, we are attempting to delete the second order line we just created. However, Business Central prevents this and notifies us that the user Pos001 does not have
permission to perform the action.

The template in Business Central that can help us modify or delete an order line is as follows:

If we look at the Permissions field in the header, we will see that there are two users with permissions. We examine them by clicking on the number.
We see that permissions for Pos001 exist; however, the ‘Allow Delete (from external apps)’ column is unchecked.

We check it, and we will see that our Post will execute successfully.

GET SERIES

There is a special function to retrieve and, if needed, increment after reading (reserve it so that no other process or user can use it) a standard Business Central serial code in
case our program or app requires it.

You can view two demonstrations of reading and writing data at
https://youtu.be/STHDS5Qui_E?si=4Gmx5NH2EJT8-FuH
https://youtu.be/8ncaBC_24YQ?si=wSMBLHD-fvaFF1XS

